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ABSTRACT

The purpose of this thesis is to research the

availability of targets moving on or near the earth's

surface when viewed by an orbiting satellite. A discussion

of basic orbital mechanics is presented as well as a

development of a suitable coordinate system. An analysis of

non-linear observability is then provided. Lastly an

observer is designed and sucessfully simulated.
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I. INTRODUCTION

This thesis deals with satellite tracking of relatively

low altitude targets. The long term goal of this project is

to determine an effective general-coverage satellite orbital

pattern. The short term goal of this thesis is to explore

the possible use of various coordinate systems and to design

a satellite observer. A target such as a slow moving

aircraft is assumed for the basic development.

Chapter 2 contains an overview of basic satellite

mechanics and dynamics as well as a brief discussion of

satellite detection and tracking equipment. Equations

regarding orbital motion will also be introduced. Also

chapter 2 provides an overview of the entire thesis.

The theory and mathematics of satellite and target

motion for a specific case are developed in Chapter 3. The

geometry of motion on a spherical surface is detailed in

that chapter. Specifics such as geometric swath width,

line-of-sight and precession are furnished. This leads into

an in-deapth examination of coordinate systems. Various

attempts to find a suitable set of reference axes for

analytic studies of the tracking problem are presented. It

is desired to achieve a target and observation model that

has a convenient basis for analysis such as either linear or
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bilinear in state space. Several trial coordinate systems

were developed mathematically but found unsuitable. One

trial system is considered satisfactory under certain

assumptions and is, therefore, completely developed.

Chapter 4 presents a discourse on observability in

general, and non-linear observability in particular. The

concept of connectedness and univalence is discussed. The

chosen system is then analyzed for observability.

The topic of observers is presented in Chapter 5. A

background on basic obsevers is provided. Finally an

observer is designed and simulated by computer for the

prefered system

.

Chapter 6 offers conclusions and recommendations for

further studies.

8
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II- THE SATELLITE IN ORBIT

Before an understanding of satellite tracking can be

achieved it is essential to have an understanding of basic

satellite dynamics and satellite sensors. The concepts and

equations that govern the motion of a satellite in orbit

around the earth are based on the physical laws put forth by

kepler and Newton. These laws of motion apply to artificial

satellites as well as planets and moons. The physical

geometries and forces are the same. The following

explanations and derivations form a basis for orbital motion

of a satellite.

A. THE SHAPE OF THE EARTH

In reality the earth is neither exactly round nor

exactly a rigid body. The constituents can be molded and

deformed to a certain degree. The earth's rotation causes

it's own materials to feel a force that pulls tangentially

into space. Fortunately the earth's materials also undergo

a constant centripetal (center seeking) acceleration to keep

them in place. This centripetal acceleration, which is

directed towards the center of curvature, is provided by

earth's gravity.

The gravitational force produced by the earth is

directed towards the center of the earth. However, the

momentum produced by the earth's rotation pulls at the
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earth's materials. Each particle of earth has both these

forces acting on it. The earth's surface at the equator is

actually moving faster around the rotation axis than the

surface material at or nearer the poles. Figure 2.1

illustrates this. Therefore the materials on the surface at

the equator feel this tangential pull the most. Analysis

shows that the result is an earth shaped like an oblate

ellipsoid

.

An oblate ellipsoid can be described as a sphere which

has been compressed along the polar axis and therefore

bulges at the equator. A cross sectional slice through the

poles" yields an ellipse. A slice along the equatorial plane

yields a circle.

This oblateness (measure of the earth's flattening) of

the earth is only slight. The equatorial diameter is

calculated to be 12,757 km whereas the polar diameter is

calculated to be 12,714 km. This is only a 43 km difference

which is about 1 part in 297.

B. GREAT AND SMALL CIRCLES

The earth's equatorial bulge can be temporarily

disregarded in order to consider the earth as a sphere

turning beneath an orbiting satellite. The intersection of

a plane passed through the center of the sphere and the

sphere is the largest circle that can be drawn on the

sphere's surface. This is known as a great circle. The

shortest distance between any two points on the surface of

10
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F-iQure d.. 1 Rotating Earth

11
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the earth is an arc of a great circle. The earth's equator

is an example of a great circle. There are an infinite

number of approximate great circles on the earth's surface

since there are an infinite number of planes that can be

passed through the earth's center.

There is a series of 24 special great circles that pass

through the earth's poles and are evenly spaced from each

other. These are called meridians and they intersect with

the equator at right angles. Meridians join at both poles.

Forming other right angles to the Meridians are parallels.

Parallels are small circles created by passing planes

through the earth parallel to the equatorial great circle.

See Figure 2.2.

In order to determine precise locations on the earth's

surface, latitudes and longitudes are utilized. The

longitude of a specific place refers to the arc (measured in

degrees) of a parallel between that place and the prime

meridian (which passes through Greenwich, England for

reasons of history). Longitudes run east and west.

Latitudes, however, run north and south. The latitude of a

specific place may be defined as the arc (in degrees) of a

meridian between that place and the equator. Figure 2.3

shows an example. When the earth is considered as having an

ellipse as a cross section (which it has) instead of a

circular one, the length of a degree of latitude is slightly

greater at the poles than at the equator.

12
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hi a are 2.2 Meridians and Parallel
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F 1 gure Longitude and Latitude
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C. ORBITAL MOTION

A presentation concerning orbital motion is basic to

satellite tracking. Gravitational attraction and momentum

combine to keep a satellite in perpetual orbit above the

earth (in the absence of friction and external celestial

attractions)

.

1 . Gravity

The understanding of gravity and orbital motion can

be traced back to Johannes Kepler (1571-1630) and Issac

Newton (1642-1727). Kepler is known predominantly for his

three laws of planetary motion. The laws are as follows;

(1) Each planet moves about the sun in an orbit that is an

ellipse, with the sun at one of the foci of the ellipse.

(2) The straight line joining a planet and the sun sweeps

out equal areas in space in equal intervals of time.

(3) The squares of the sidereal periods of the planets are

in direct proportion to the cubes of the semimajor axes of

their orbits.

The above three laws apply equally well for

artificial satellites as they do for planets. Newton

restated and clarified Kepler's laws. Newton was an

advocate of rigorous proofs whereas Kepler preferred to

state empirical laws based on observations.

Kepler's first law stated mathematically is

f = Bv 2 /r (2.1)

15
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where: f=centripetal force needed for circular orbit,

m=mass of planet (or satellite) in orbit,

v = velocity of orbiting body,

r = distance between sun and planet (or satellite and

earth)

,

Kepler's third law restated mathematically is

(m,* m^p J = 4ir J a
3

/G (2.2)

where ml and m2 refer to the masses of two bodies that

revolve mutually about each other.

p = period of revolution,

a = semimajor axis of relative orbit,

G = universal gravity constant ( 6.67 x 10 mYK<j -5^ )

Newton also explained the reasons behind kepler's

original observations. That is, Newton supplied the laws of

motion which are at the root of classical mechanics.

These laws are as follows;

(1) Every object remains at rest or in uniform motion
unless an external force acts upon it.

(2) The product of the mass of an object and its
acceleration vary directly as the resultant force, and
the change in motion takes place in the direction of
that force.

(3) For every action there is an equal (in magnitude) and
opposite (in direction) reaction.

In the case of orbiting planets or satellites,

gravity is the unseen force referred to in Newton's first

law. Newton al3o postulated that every particle of matter

in the universe attracts every other particle. The force of

16
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this attraction is proportional to the product of their

masses and inversely proportional to the square of the

distance which separates them.

In equation form this is

F = Gm,

m

z /d J (2.3)

where d is the distance between the center of mass 1 and

mass 2.

Orbital motion can be understood in terms of

Newton's laws previously stated. The critical factors in

putting a satellite in orbit (by the traditional launch

method) are speed and direction of movement at burnout.

Burnout is when the rocket engine shuts off and the

satellite behaves as an astronomical object.

As a satellite follows it's orbital path it

continuously falls toward the earth due to the earth's

gravitational pull. However, the satellite's momentum

prevents it from really being pulled any nearer to the

earth. The satellite's orbit is the result of two main

forces. The momentum of the satellite is a measure of its

state of motion. The inertia of the satellite (recall

Newtons first law) is that property that causes the

satellite to resist acceleration and travel in a straight

line. For the satellite to move in a circular path rather

than in a straight line, it must continually suffer an

acceleration toward the center of the circle. This

acceleration is centripetal acceleration. The central force

17
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that produces the centripetal acceleration is that

gravitational attraction between the satellite and the

earth. Figure 2.4 illustrates this in vector form.

The period of an artificial satellite is directly

related to the size of it's orbit; i.e, the closer the

satellite is to the earth the faster it travels.

2 . The Center of Mass

The center of mass can be defined as that point

within a system that either remains fixed or moves as if the

entire mass of the system were concentrated at that point.

For a number of particles the center of mass is defined as

r = (1/M.rym.. >£m-r. (2.4)

An example of this for a two body system is

*c,»v
=

"ft
•*" "^ (2.5)

m, + m 2

Mass 1 is a distance x(l) from an arbitrary origin,

and mass 2 is a distance x(2) from the origin. X(cm)

represents the location of the center of mass. A solid

object can be thought of as a collection of a great many

particles. In this case equation 2.4 applies.

Very often it is useful in certain calculations to

treat a particular body as if its entire mass is

concentrated at one point. That one point is the center of

mass.

18
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Figure £. 4 Centripetal Pcceleratior

19
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It can be shown CRef. 1] that a large sphere

attracts other bodies as though the sphere's mass is all

located at the center. This holds true as long as the

sphere is of uniform density or is made up of concentric

shells each being of uniform density. The earth is often

approximated as being a sphere made up of uniformly dense

shells CRef. 23

.

3 . Equations of Motion

A satellite in orbit around the earth will feel by

far the strongest gravitational pull from the earth itself.

Other astronomical bodies, such as the moon or sun, do exert

force disturbances but are too far away to exert a very

strong pull on the satellite. Assuming the gravitational

acceleration of the satellite is due only to the earth's

gravitational attraction, g can be defined as

g = Gm,/r 2 (2.6)

The value of g does vary with respect to altitude

and latitude (since the earth is not really an exact

sphere). Tables 1 and 2 depict the variations of g. The

values of g are close enough to allow an approximation of

the earth's shape as spherical for most applications.

An orbiting satellite is considered to be in the

earth's gravitational field. The vector symbol g refers to

this field and is defined as

20
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TABLE 1

VARIATION OF g WITH LATITUDE AT 5EALEVEL

Latitude gCm/s^ )

0" (equator) 9.78039
i

10° 9.78195
20° 9.78641
30* 9.79329

i

40° 9.80171
50° 9.81071
60° 9.81918
70° 9.82608
80° 9.83059
90° 9.83217

TABLE 2

VARIATION OF g WITH ALTITUDE AT 45° LATITUDE

Altitude ( km

)

O
1

4

8
16
32
100
500
1000
380000

g(m/s'

)

9.806
9.803
9.794
9.782
9.757
9.710
9.600
8.530
7.410
0.003

J

21
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g = F/m (2.7)

When an object is a distance h above the earth's

surface it has potential energy defined as

U = -<-mg)h = mgh (2.8)

Gravity is a conservative force pointing to the

earth's center and has the value (-mg). The gravitational

force exerted on an object in this field can be derived from

the potential energy equation as

F = -du = d f-GMml = -GMm (2.9)
Ir drldr "dr L r

J
r 2

A more general form for potential energy invoking

the universal constant G is

U = -GMm/r (2.10)

Potential energy can be converted into kenetic

energy CRef . 3] . As an object falls to earth it loses its

potential energy as its height decreases but gains kenetic

energy as its velocity increases. Kenetic energy is

mathematically defined as

K = GMm/2r = iv J /2 (2.11)

The total mechanical energy is

E = K + U (2. 12)

Orbital motion can be considered as motion in a

plane. For one full revolution around the earth the

satellite remains in a plane as it traces out an ellipse or

circle

.

22
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The velocity, period and altitude of a satellite are

all inter-related. The period of a satellite CRef. 21 can

be defined as

7T= 2tt(R + h)/v , C2.13)

where v is the velocity of the satellite.

The centripetal force, is often defined as

F = m
3
v J /(R + h) (2.14)

where m is the mass of the satellite.

It is obvious to the casual observer that the

centripetal force is also in part a function of the

satellite's altitude and velocity. Polar coordinates are

used in figure 2.5 to illustrate the elliptical orbit

variables.

4 . Uniform Circular Motion

Sometimes a satellite's elliptical orbit is that

perfect ellipse the circle. If the satellite's orbital

velocity remains unchanged in a circular path then the

satellite is moving with uniform circular motion.

Since the orbit of a two body system (earth and

satellite) is often in a plane it is possible to use polar

coordinates to develop basic equations. Figure 2.6 shows

the relation between polar and rectangular coordinates.

Velocity in polar coordinates for circular motion can be

expressed as

23
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Figure 2.5 Elliptical Orbit
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Figure 2.6 Polar and Rectangular Coordinates
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V = r99 (2.15)

where 8 refers to motion in the theta <8) direction.

Acceleration is found by taking the derivative of the

velocity

a = -r9'r + r88 (2.16)

Energy can be expressed as

E = K + U = m<r J 8 J >/2 - GMm/r <2.17>

and angular momentum as

L = mr J 8 (2.18)

Uniform circular motion is easier to deal with than

non-uniform circular motion. There is only an angular

component of velocity present in the equation. It is often

useful to simplify the satellite dynamics in order to more

easily manipulate equations.

5. Equations of Motion in Polar Coordinates

Consider the special case of a satellite in a

circular orbit. This can be treated as motion in a plane.

Polar coordinates are especially usefull for this case. The

two variables that define motion and position are the radial

coordinate, r, and the angular coordinate, 8, conversion

between rectangular coordinates and polar coordinates is as

follows

.

r = J

X

J + Y* X = rcos<8)

8 = arctan<Y/X) Y = rsin(8)

Figure 2.7 illustrates this.

25
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Polar coordinates are often used any time

curvilinear motion occurs. In Figure 2.8 basic curvilinear

motion is shown. The differential length dr has components

in both the r and 9 directions. The vector r can be

expressed as rn where n is a unit vector in the radial

direction

.

Velocity can be defined as;

v = d(r) = d(rn r ) = dfr* nr) + rdnr (2.19)
dt ~dt dt dt

Rectangular coordinates are used once again to achieve an

expression for the time derivative of the unit vector n and

He ;
-

n_ r
= cos(8)i 3in<8)j n_ e = -sin<9)i + cos ( 9 ) 3

n r = -sin(8)i8 + cos(8)j8 = (-sin(8)i * cos(8)j)8 = 8ne

n^ = -cos(8)i8 - sin(8);)8 = -(cos(8)i + sin(9)j)9 = -On,

Velocity can now be expressed as;

V = rn + r9n n

Following the same rules of differentiation acceleration can

be derived.

a = V = rn + r9n + r9n, +r9n,_ -r8 J n

Simplifying,

a^ = ('r - r9')n + (2r9 r9)iK (2.20)

For circular motion the radial component, r, remains

constant. Only 8 varies. Therefore;

V = r9n
e

(2.21)

a = -r9'n + r9n, (2.22)_ — r — B

26
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/ y
r/ i \

a J

Figure £.7 Coordinate Conversion

-

^
Figure £. 3 Curvilinear

Figure £. 'J Vector Force*.

£7



www.manaraa.com

The acceleration term directed in the negative radial

direction is the center seeking acceleration.

Figure 2.9 depicts the directions for the force vectors.

The sum of forces is calculated as follows;

ZF = ma = m(r-r8 J )n C2.23)- r- — r — r

ZF^ = ma = m(r8 + 2r8)n <2.24)

Using differential equations and state form motion can be

represented as in equations 2.27 and 2.28.

dr/dt = Vr (2.25)

d8/dt =cu (2.26)

dV /dt = Vg/r - k/r * U - 6,- (2.27)

d- /dt = -2vy^Vr + (U -6
r
) /r (2.28)

where U, = F
(

_/m and u\ = F@ /m. Both variables represent

thrusts. The symbols 6 r and 6& are used to represent

disturbances which are suumed to be zero in this case.

D. SATELLITE SENSORS

Various sensors on board the satellite are employed to

keep the satellite itself on track, and to detect and track

a possible target. The satellite guidance system uses

sensors for measuring certain vehicle dynamic variables.

Such variables include satellite acceleration, velocity,

position and angular velocity. Guidance systems generally

determine these variables, compare the received information

with desired parameters, and generate correction commands,

various types of sensors include inertial 7 optical and

radio sensors. The satellite may make use of gyroscopes to

28
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establish a set of reference axes on board. Active thrust

control is used to align the body axes with the reference

axes. Once the satellite has established the craft's

position and attitude active control components are

activated. These components respond either to a telecommand

from a ground station or to the satellite's on-board

computer in order to correct the satellites' s status. In

some applications where perturbations are likely, feedback

control is added to the active control of a satellite. In

some cases optical sensors are used in conjunction with

inertial equipment. Optical sensors include such devices as

sun finders, sun sensors, planet sensors, celestial

trackers, and horizon scanners. The gyroscopes and

accelerometers are examples of inertial sensors. In certain

applications the inertial sensors provide short-term

stability and optical sensors provide long-term stability.

The gyroscope is an inertial guidance system that is

often used for ships, aircraft and spacecraft. A gyroscope

is a device that possesses a high rate of spin about an axis

of symmetry that has freedom of angular rotation. Examples

of gyroscopes are the rate gyro and the integrating gyro.

Surveilance satellites normally have an entirely

different set of sensors for target acquisition. Very often

this type of satellite carries several types of information

gathering devices. High resolution optical devices, radar

scanners and infrared capacity can all be included in a

29
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satellite payload. Passive systems are sensitive receivers

which normally provide data on bearing and bearing rate.

These systems have the advantage that they do not alert the

target of their actions. Optical techniques normally

involve lenses and cameras. This can be very precise,

especially at low altitudes.

Radar is an example of an active sensor. It bounces

radio waves off a chosen target. This is excellent for

determining both bearing and range. Both optical and radar

methods can be degraded by poor atmospheric conditions. For

the radar tracking technique noise is always the main

limitation

.

Inverse scattering methods are being developed to enable

polarimetric radar to obtain better target information.

This procedure involves illuminating the target with

polarized waves and observing the amplitudes and phases of a

set scattered waves.

Another type of sensor is the synthetic aperture radar

system. This is based on holography methods. Holography

has the ability to record three dimensional pictures and

focus sharply on both the near field and the far field at

the same time. Thi3 involves recording a wave interference

pattern. A microwave generator is used to provide a

constant frequency microwave signal as well as a reference

wave. This is considered to be a highly precise and

accurate sensor.

30
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Passive sensors are normally infrared sensors. There

are two major techniques used in enfrared detectors. The

two main types are called photon detectors and thermal

detectors.

In photon detectors, the technique used involves a

photon of infrared radiation being absorbed by a semi-

conductor electron which raises its energy level into a

conduction band. Photons with less energy than the band gap

produce bo signal and are thereby effectively filtered out.

Thermal detectors function be sensing the temperature

change resulting from absorption of infrared radiation by a

suitable element. Usually, this absorbing element has some

temperature sensitive electrical property such as

resistivity so that the temperature change is sensed

electrically

.

One device often used in passive detectors is the

radiometer. This device is a broadband, dual frequency ,

low noise, solid state, remote controlled mechansim.

Radiometers are used to obtain high resolution imagery from

low altitude satellite's.

A promising type of detector is the Silicide Schottky

diode based infrared camera. These are easy to manufacture

and have excellent performance. The camera focal plane

consists of a two dimensional array of metal electrodes

fabricated on a silicon substrate. The focal plane is back

illuminated. When an infrared picture is observed, hot
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carriers are emitted from the focal plane electrodes. An

electronix image of the scene is formed by accumulation of

these carriers on a pixel by pixel basis.

Another technique involves the Charge Injection Devices

<CID) . These devices are surface charge devices that

collect photon generated charges and store them in MOS

capacitors.

Other types of infrared detectors include the Lead

Sulfide (PhS) Detectors, Lead Selenide Detectors (PbSe),

Thermister Infrared Detectors and Indium Antimode Charge

Injection Devices.

One tracking technique available to surveillance

satellites involves the use of the doppler effect. The

satellite emits a signal and then receives the signal's

return after it reflects off a given target. The change in

frequency as a result of the relative motion between

satellite and target leads to a calculation of the targets

velocity. Ref 3 defines the return frequency,- , detected

by the satellite as

i^'= >-'<l-u/c)/ 1-Cu/c)', (2.29)

where

^ = frequency detected if both were at rest,

u = relative separation speeds,

c = speed of light.
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Artificial satellites are often subject to a variety of

disturbing forces. These include atmospheric drag,

variation of atmospheric density, solar radiation pressure,

surface charge drag, meteorite impacts, lunar or solar

gravity caused perturbations and possible encounters with

hostile killer satellites. These potential disturbances can

act seriously to impede the position as well as the attitude

stability of a satellite. Fortunately, there are passive

and active stabilization systems to enable recovery from

most perturbations.
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Ill- SATELLITE COVERAGE AND COORDINATE SYSTEM S

This chapter includes satellite coverage, spherical

geometry and coordinate systems. A coordinate system which

enables analytical calculations of satellite observer and

tracker is desired for at least a single case. Several

systems are explored in an attempt to find a suitable set of

reference axes to establish a base for more complicated

analysis by computer. A simple case is introduced and an

appropriate coordinate system is presented.

A. GENERAL SATELLITE COVERAGE

Basic information on satellite coverage is discussed

here. An understanding of geometric swath width and

precession is required for a detailed study of satellite

tracking

.

I • Geometric Swath Wi dth

As a satellite travels around the earth it covers a

certain amount of surface area. This area is in the form of

a spherical cap (figure 3.1). As the satellite's altitude

above the earth increases the area of the spherical cap

increases. The area of the spherical cap CRef .5] can be

calculated as

A = 2ttR' (l-sin(90°-9) ) (3.1)
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where R is the radius of the earth and 9 is the angle shown

in Figure 3.2.

It appears from this that a high altitude orbit is

beneficial. However, it must be considered that as

satellite altitude increases, satellite sensor accuracy

decreases

.

If a target is at point *a' (as in Figure 3.2) it

can be viewed by the satellite as long as the satellite is

between points 1 and 2 on its orbit. This portion of the

orbit keeps the satellite above the horizon with respect to

the target. The amount of time the satellite is above the

horizon is calculated CRef. 53 to be

t = 29/w (3.2)

where w is the angular velocity of the satellite.

As the satellite progresses in its orbit the spherical

cap of coverage moves with it. As it moves, the cap traces

out a ribbon around the earth. The width of the ribbon

(Figure 3.3) is the geometric swath width (GSW).

Figure 3.4 illustrates the GSW as the very dark arc on

the earth's surface. The dotted line from point 1 to

point 2 is tangent to the earth at the surface location

directly beneath the satellite. R is the radius of the

earth and h is the satellite altitude. The arc, a(l), in

Figure 3.5 is one half the dark arc in Figure 3.4. Simple

geometry proves that arc a(l) = R9 . Therefore the
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Figure J. 1 Spherical Can

Figure j. d View of the Target
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hiaure ^. 3 Geometric bwath Width Ribbon

Figure 3.4 Geometric bwath Width
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GSW = 29R. Figure 3.6 depicts a right triangle. From the

rules of trigonometry cosine(8) = R/(R+h). Therefore,

8 = arccosine(R/(R+h))

It follows by substitution that

GSW = 2R(arccosine(R/(R+h) )

)

(3.3)

2 . Ground Track and Coverage

As a satellite travels in its orbit the distance it

moves in one full trip around the earth is

D = 2iv(R + h) (3.4)

where R is the radius of the earth and h is the satellite's

height above the surface. The orbital speed is calculated

CRef.5] to be

S„ ' 4.2685(R/(R*h) ) km/sec (3.5)

The satellite also has a ground speed and a ground

track. The satellite's position can be projected on to the

earth's surface. This point on the earth's surface directly

below the satellite is called the sub-satellite point (SSP).

As the satellite moves its SSP forms a ground track which

can appear as simple as a circle about the earth or a mere

point on the surface or they can appear very complicated.

The ground speed due to the satellite's motion alone is

$
s

* 7.9053(R/(R+h> )km/sec (3.6)

However, the earth does rotate at about 0.267472

km/sec at the equator. The actual ground speed depends on

the inclination of the orbit plane to the equatorial plane.
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Fi g ure 3. 5 fire

Figure 3.6 Right Triangle
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For all cases the ground speed is less than the actual

orbital speed. As the ground track is formed so is the

ribbon whose width is the GSW. Because of the earth

rotation beneath the satellite the swaths may overlap at

some places yet never cover other places. If the earth's

rotation is ignored and its shape is assumed spherical a

satellite staying in one plane traces the same circular

swath on every orbit.

If the earth's equatorial bulge is taken into

account the plane of the orbit precesses about the earth's

axis of rotation. This precession is caused by the non

central gravity force field in which the satellite travels.

It is measured by the rate of drift of longitude on the

surface of the earth.

For an elliptical orbit the rate of precession is

o. = 9.95(R/a) * (cosineC i ) / < 1-e J
)

2 (3.7)

where ft = orbital plane precession rate in degrees/day

R = mean radius of the earth

a = semimajor axis

e = eccentricity of ellipse

i = angle of inclination of orbit

For the special case of a circular orbit the

precession rate is

fl = 9.95(R/(R+h) ) * cosine(i) (3.8)

If the effect of this precession is ignored, the

motion of a satellite lies in a plane passing through the
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center of the earth. A satellite making one revolution per

day at 0° inclination to the equator is stationary over a

point on the equator. In this case a stationary spherical

cap on the earth's surface is the only area covered.

Commercial communications satellites are usually

geostationary. This is a special case of the synchronous

orbit (24 hour orbit) . If a synchronous orbit is inclined

to the equator the ground track is a figure eight.

3. The Spherical Triangle

At this time all the simplifying assumptions are

invoked to establish a base for further analysis. The

satellite is traveling in a circular orbit above the

equator. Obviously, transformations to other orbits are

readily available. The SSP is always on the equator. There

is a target traveling on a steady course at a constant

velocity and therefore following a great circle heading.

This is not an unreasonable assumption. It is normal for a

ship or an aircraft to keep to a great circle heading at a

most efficient cruising speed and altitude. The target is

assumed to be on the earth's surface or very near to the

surface. Figure 3.7 illustrates the paths for both the

surveilance satellite and the target. The target track is

inclined i • to the satellite track. It is assumed that both

can be considered to be moving on the surface of the same

sphere with transformations readily available to the actual
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satellite position. The earth is assumed to be a perfect

sphere and is approximated by a point mass at the center.

The two paths intersect in Figure 3.8 at point 0.

The letter 5 represents the present position of the

satellite and the letter T represents the present position

of the target. These three points <0,S and T) on the

surface of the sphere define a spherical triangle.

Spherical trigonometry is used to attempt to find a suitable

coordinate system for the satellite tracking analysis.

B. COORDINATE SYSTEMS

Several coordinate systems are tested at this time. The

set of reference axes is a relative one. It is assumed that

the origin of the coordinate system is moving with the

satellite relative to the earth. Appendix B explains.

1 • Use Variab l es $ and 6

Supposedly any two independent variables from

Figure 3.9 can form the basis for a state-space model for

target tracking. The variables $ and 6 are chosen for the

first attempt to form a suitable coordinate system. The

original four state variables x(l) through x(4) are defined

below. Derivatives are found for the four state variables.

In an attempt to establish a least-complicated structure,

however, these lead to other state variables and other

derivatives; i.e.,

x ( 1 ) = cosine ( $)

x(2) = sine(5)
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Figure 3. 8 Intersecting Paths

igure 3.9 Spherical Tra ingle
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x<3> = cosine(6)

x(4) = sine<6)

Taking derivatives of two of the above variables yields

x(l> = -x<2)

x<3) = -x<4)

Using the trigonometric law of sines X<2) can be defined as

xC2) =
i sine(1\)sine<T) |

= sine<l\) si ne(6 )

\_
sine(6 ) J sine(a)

Since in this case a and sine<a) are constants the second

identity is easier to use. Sine(ot) is replaced by the

letter A and sine<6) is replaced by x<4) . This yields

X(2) = sine<r^)X(4)/A

The same procedure is used for XC4). The law of sines

provides an easy alternate form. X<4) can be defined as

x<4) = sine(t) A/sine<9)

Table 3 summarizes the mathematics of expanding the state

space. It is soon obvious that this state space is not

readily reducable to a single structure by increased

dimenssion. It therefore is abandoned.

2 . Use of Variables 8 and $

Two new independent variables are now used in an

attempt to generate a state-space model . As before the sine

and cosine functions are employed.

X(l) = sine<$)
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TABLE 3. STATE SPACE FOR VARIABLES $ and 6

X(l) = cosine(S) X(2) = sine(i)

X(3) = cosine(6) X(4) = sine<6>

X(l) = -X(2) and X<4) = -X<3)

X<2) = sin(T\)sin(6)/sin(a) = sin <T|)X<4) /A

X<2) = cos<rpr\X(4)/A sin(T\)X(4)/A

Let X(5) = cos(T\)'hx <4) and X(6) = sin<T|)X<4)

X(5) = -sin(T\) (f\) *X(4) + cos(T\)T\X (4) * cos (7\) <T\> <l\> X (4 )

Let X<7) = sin<T\> CT\> *X<4> and X(8) = cos crpT\X ( 4

)

and X<9) = cos <T\) (T\) CT|) X < 4

)

X(7) = cos CO[> <T\f X ( 4 ) * sin(TL> (2f\.)f(X(4) + sin <T\) (T\) a X (4)

Let X(10> = coa(T\)(l\)
3
X(4) and X<11) = sin (i\> <2f\)"nx <4)

and XC12) = sin(T\) (f\) 2 X(4)
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X(2) = cosine(S)

X(3) = sine(9)

X(4) = cosine<9)

The derivatives for two of the above are

X<2) = -x<l)

X(4) = -x<3)

As before sine (a) is represented by the constant A.

The law of sines is also used again. Table 4 summarizes the

mathematics of the expanding state space. As before these

variables as a basis for a coordinate system do not seem

suitable for tracking purposes.

3. The Proiected-Qrbit Technique

This technique involves projecting the circle which

is the target track onto the equator which is the

satellite's ground track. Figure 3.10 illustrates the

technique. The target position T is projected down onto the

satellite's orbit at position T'

.

Let t = w(s) (the angular velocity of the satellite)

and let $ = w(t) (the angular velocity of the target).

For convenience let Y = ST' (see Figure 3.11) and X

= ST' the arc length (see Figure 3.12). The arc length 0T'

= 0T and angle $ = angle $' . It follows that

$ = t 9

and

e * s - t.
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TABLE 4. STATE SPACE FOR VARIABLES $ and 8

X(2) = cosine(S)

XC4) = cosine(9)

X(4) = -X<3)

X(3) = sin(a)/sin(5)\

X(l) = sme(S)

X(3) = sine(6)

X(2) = -X<1)

X(l) = sinCTp/sinO)
(_
sin(a)j Lsin(T\)J

X(l) = X<3)sin(rL)/A + cos(T|)r\X<3) /A

Let X<5) = X<3)sin(T\) and X<6) = cos <T\)ir\X < 3

)

X<5) = X(3>sin<r\> * cos<T\)T|X<3)

Let X(7) = XC3)sin<T\) and X<8) = cos(T\)f)X (3)

X<7) = X( 3) sin Op.) + X<3)cos(f\)f\ = X < 3 ) cos (T\) T\; (XC3) = 0)

Let X(9) = X<3)cos<T\)f\

X(9) = X<3)sin<T\> <TJ_)
a + X < 3 ) cos <Y\>f\,

Let X(10) = X(3)sin(T\) <f\) J and X(ll) = X(3)cos <Y\)l\

< j

XC10) = X(3)cos(T\) CY\) X<3)sinCT\> <2f\)l\
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Figure 3.10 Projected Track

Fiqure 3.11 The Line Segment ST'

Figure 3. 12 The Arc ST'
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Taking time derivatives we find

8 = s - T = w<t) - fo<s>

To obtain a state space interpretation Y and X and

their derivatives are defined. Figure 3.13 shows an angle

bisector which splits 8 and ST' . This forms two right

triangles. Using geometry and trigonometry it follows that

sine<8/2) = T'A/R

AT' = ST'/2

ST' = 2Rsine<9/2) = Y

Y = 2rcosine<8/2)9/2 = Rcosine< 8/2) 8 =

Rcosine(9-T) (w(t)-w<s>)

X = ST' = 8R

X = 8R R8,

but R = 0;

therefore,

X = R8 = R<w<t)-w(s>>

Recall R is a constant for this case and therefore R

is zero.

With Y and X defined above a logical state space is

originated. The measurement equation is also important.

In order to define a measurement equation

Figure 3.14 is constructed. Note that points 0,S and T' do

not form a straight line.

0T' ? OS + ST'

However, in terms of arc lengths the following applies;
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OT' = OS + ST'

The dotted line bisects angle a and therefore

BT = TT'/2

Using geometry and trigonometry it can be shown that

TT' = 20T'sine(a/2)

and

BT/OT = sine(a/2)

From Figure 3.10 it follows that

OT' = 2Rsine((cr + T)/2)

A new triangle is defined in Figure 3.15. Using simple

geometry it is obvious that

& = it/2 - a/2,

and by simple trigonometry

DT = TT'sine(ft)

and

DT' = TT'cosine(G)

tangent<€) = TD/SD

therefore

SD = TD/tangent(€)

The line segment ST' is solved for

ST' = SD + DT' = TD/tangent<€) + TT' cosine <fi>

It is essential to express ST' in terms of usable variables

ST' = TT' <sine(G)/tangent<€> + cosine(fi))

is achieved by substitution for segment length SD

.

TT' = 20T'sine(cc/2) = 2 (2Rsine< <ct*t) /2) ) sine <a/2)

therefore
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Figure J. 13 Angle Bisector
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ST' = 4Raine/ crt-T
| alne(a/2) f aine(fl) + coaine(fl)

V. 2 J
'

L
tangent <€)

Let 4Rsine((ff+T)/2)sine(a/2) = Q for convenience.

Then ST' = Q (^sine(B) /tangent (€) cosine(G). Also,

recall that 6 = tt/2 - a/2

ST' = Q
j

sine(Tr/2-a /22 + cosine<Tr/2-a/2>;
^ tangent (€) J

It is important to relate X and Y.

X = ST' = 9R and Y = ST' = 2Rsine(9/2)

For convenience use a ? X/R

Y = 2Rsine(x/2R) and R = X/cr = Y/2Rsine (cr/2

)

therefore

X = crY/2sine(cr/2)

It is now necessary to solve for € which indicates bearing.

Y = ST' = Qcosine(a/2)cotangent(€) + Qsine(a/2)

cotangent(€) = _ Y - sine (a/ 2)
Qcosine<a/2) cosine(a/2)

Taking the arccotangent of each side, substituting back in

for Q and then simplifying leads to

€ = arccotangent ^ij}eJJC2R_)__ - tangent (a/ 2)
sine<$/2)sine<a)

This is the measurement equation. The final result is a two-

variable state space and a measurement equation. From the

measurement equation an observer can be modeled. Table 5

summarizes the results.
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TABLE 5. STATE SPACE IN X AND §5

I

State Space

S = wt(t) (3.9)

X = R(w
t
(t)-w/ )) (3.10)

Bearing information (measurement)

€ = arceotangent
r

sine(x/2R) - tangent(a/2) (3.11)
sine <5/2) sine <a)

* —

'

Table 6 summarizes the results for an alternate

coordinate system.

TABLE 6. STATE SPACE IN Y AND $

State Space

Y = R 1- Y* (w - w )

£ = w

€ = arccot
Bearing information
y - tan<a/2)

2Rsin< 36/2) cos <a)

(3.12)

(3.13)

(3.14)

A previously researched thesis CRef 63 provides a

useful coordinate system based on latitudes and longitudes.

Table 3.4 summarizes this coordinate system.
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IV- OBSERVABILITY

At this time it is important to determine observability

of the target. Assuming the satellite's detectors yield

only the bearing information (as developed in Chapter 3)

,

it is necessary to obtain the target's position defined with

X and $. Since this cannot be measured directly it must be

estimated in some way. Analyzing the state equations from

chapter three it appears that if C^r and ^: are given the

knowledge of X(0) and 1(0) (the initialed states) are

sufficient to determine X(t) and 5(t) all along the

trajectory

.

X(t) = X ( ) R
j B^Cr > -u;( « 3 d '?

$ ( t ) = 5(0)
+f

ujv < t) d r
o

The possibility of estimating the state from the output

measurement under the assumption that the system dynamics is

completely known is defined as observability. Therefore

the observability of the system must be determined.

All changes in a given system must be reflected in the

output for the system to be observable. Figure 4.1 shows a

simple example. The states X and X are estimated from

knowledge of the output. If all states are observable for

all times then the system is completely observable. This is

defined in detail in CRef. 63.
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Figure 4.1 A Simple System

The test for observability on linear systems is fairly

straight forward. In general the observability of linear

systems is established by examining the linear

independencies of the columns in the matrix function

C(t)$(t,tc )» where C<t) is the measurement matrix and l(t,t.)

is the state transition matrix. For the linear time

invariant system this leads to a simple rank test on the

appropriate observability matrix. To illustrate this

approach we may consider the following linear system,

X = AX

Y = CX

where A is a square matrix, X is an n-dimensional state

vector and Y is an m-dimensional measurement vector.

Assuming that Y(t) is differentiable up to the <n-l)th

order, we have

Y'= CX = CAX

Y"= CAX' = CA'X

n ' t\-i

Y = CA X

A matrix is set up as shown:
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~1

n-i
Y

C

CA => Y = Q X

CA j

where Y is the extended measurement vector of dimension mn.

The matrix Q is the observability matrix and has

dimension mnxn . Clearly if rank Q = n, X can be uniquely

solved in terms of the measurement Y. It should be noted

that differentiability of YCt) is not required for

observability of linear systems and that the above result

can be derived in a different way. The presented procedure,

however offers the possibility of extending this result to

the observability of non-linear systems; namely in the

equation, Y = Q U X, any subset of n linearly independent

equations can be considered Y = QX, Q. can be regarded as the

Jacobian J of Y with respect to X. Hence if rank J = n the

linear time invarient system is observable.

A. OBSERVABILITY OF NON-LINEAR SYSTEMS

In the past it has been very difficult to determine

observability of non-linear systems. Recently, however, a

number of new methods for obsevability testing have been

developed

.

A fairly simple test that determines observability in

non-linear systems is developed in CRef . 6] . This new

method tests observability and identifies any unobservable

states that may exist. If the system is unobservable than

the measurement doesn't provide enough information for state
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estimation. System observability and state estimation are

directly related.

A non- linear system can be represented as follows:

X(t) = f(X<t>, u(t),t> (4.1)

where f <) is an n-function, XtR , U <£. R .

The measurement equation is:

Y(t) = h(X(t),t) (4.2)

where h<> is an m-function, YcF".

Y<t) must be differentiable up to the (n-1) order and

U(t) must be differentiable up to the (n-2) order. A state

X. <t ) is observable at t if knowledge of the input U(t>

and the output Y(t) from time to to t , enables X <tc ) to be

determined.

Equation 4.2 is differentiated to provide a necessary

system of non-linear measurement equations.

Y = h<x>

y' = <J h + Jh Jx = hT + hA f = h,(x,u)
£ t o x .3 t

y" = Ah. •* o h, Jt + i>h, -^u =

<J> t cj x Jx ju <_!>t

h lt. * h (X f + h lJU_u' - h,<x,u,u')

iiY = h
c ,WJ -r hcn-i;Af + h (lW) ^u...

h^'-v-1
' » hM ,«A y.'...Aw ,

Define an mn measurement vector Y by
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Y =

and an mn function HO to b<

H<) =

V-t

The functional relation in vector form is

Y = H(x.v) ( 4 . 3 >

rti)where v(t) is a function of U , i = l,....<n-2).

With respect to equation 4.3 the question of observability

can be developed as the existence of an inverse of this

function. Clearly, this is related to the Jacobians of H.

However, for the case of linear systems an inverse, if it

exists, has to be unique. It will be shown late that here

this need not be the case.

Two conditions must be met for this non-linear system to

be observable in the strict sense. These two conditions are

connectedness and univalence. Connectivity is a necessary

condition for observability in the strict sense and a

necessary and sufficient condition for observability in the

wide sense. Connectedness is satisfied if every state is

connected to the output in some way. Univalence is

satisfied if every state is uniquely determined in terms of

the measured output. A one-to-one mapping is considered
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univalent. Both conditions together are necessary and

sufficient to establish observability in the strict sense.

To explain this consider Y(t) as expanded in a Taylor

series.

Y(t) = y<t c ) + y'(tc )<t-t,) + X»y <t. ) (t-t
c

)
J + ..

* <l/(n-l) ! )y
cft,)

Ctc ) (t-t
e

) + r(t)

Knowledge of the measurement trajectory Y(t) is

equivalent to knowing the coefficients and remainder in this

equation. This Taylor series expansion is considered unique

and therefore the coefficients are also unique. The

coefficients are the elements of the measurement vector Y.

Therefore, any state X
(

(t) is observable as long as it is

connected in a one-to-one manner to an element of Y. If the

connection is not one-to-one the system is observable only

in the wide sense. An example of this follows.

X'= Y

In this example X can equal either the positive or

negative square root of Y. This is a multiple valued

function. Therefore the mapping is not one-to-one. Hence

the system cannot be observable is the strict sense.

As mentioned earlier the connectedness condition is

satisfied if the existence of an inverse of the function

can be established. According to CRef . 63 the inverse

function is considered established if the determinant of the

nxn Jacobian of H does not equal zero for all x and v. If
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J = O then one or more states are unobservable. If H has

more than one right inverse then univalence is not satisfied

and the system is only observable in the wide sense.

However this will suffice for this case.

B. JACOBIANS AND NON-LINEAR ANALYSIS

Recall from chapter three that two possible bearing-only

measurements have been found. These are illustrated in

Tables 5 and 6. Both the measurement equations (bearing-

only) are highly non-linear. The Jacobian matrices in

Tables 7 and 8 are defined using the measurement equations.

These Jacobians are necessary for observability

analysis. It is essential to ascertain whether or not their

determinants are equal to zero. The Jacobians in

Tables 7 and 8 are based on the state space and measurement

information available in Tables 5 and 6 respectively.

The calculations for rj , J ^ A5 X , c5 ^ <tys * S^/S/. and *Jy/j0

concerning the variable X are in Tables 9 through 11. The

result of the calculations for
'

}
J » J -'J /j / ' *->V*J& *^1 '"-> / and

'J^j/Srt concerning the variable Y proved very complicated and

are therefore not used

.

It is obvious that the determinants of these Jacobians

are going to be difficult to analyze. Table 12 illustrates

the determinant solution. To discover whether or not a zero

value is achieved two separate methods are invoked. First,

a simplification is utilized. Recall from chapter one that

a satellite is restricted regarding the amount of area it

61



www.manaraa.com

can cover. Therefore the numerical value of the angles 5

and t are restricted. The variable X is composed of $ and t

(X=R($-f)>. The development of the spherical triangle in

TABLE 7 JACOBIAN UTILIZING X

1

f

i

J =
4Sx %
4x

6rK

\50

J

TABLE 8 JACOBIAN UTILIZING Y
-

% J%
J '-

^ ?/ <%
.

#/ /S0

»
. \ -
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TABLE 9 JACOBIAN - X - PART 1

f-
---/

l+K^kr-W^) ,*.

|sin&)sin?§>s3

L^^^r/^-tefeMJsio^
ln^)5inV^z_)

v^ J

^9/ - -Co^^X/^K)

AIR

o^^m^)

J
7,

f/-/
=

'J^ J2 sin<r^/i?J

+ [rfm(MR\ --tW^) fi smfcO^irxri/a)
SmCcKj^in^/^)
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TABLE 10 JACOBIAN - X- PART 2

f
7/jy =

4-t

Uf^-H*l^^
{gife-k^]^W,n^)

A *"#>«# -H Co5
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TABLE 11 JACOBIAN - X - PART 3

J
T

\ is\nC<OR)
-

s>\tifa)sniC£/2)

-ta^/z )
I s,n^)..SinV<%)

JL ccs/X )<W& + 2 «•"'*
ZR I * P

Sin/
/

z

r3 -#>#) - i «*w «0J fe^
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TABLE 12 DETERMINANT OF JACOBIAN

r

2- )1

'C^/i)

il̂ Bjr^4^H4h HiH4Y h*li, )
*/4

f

-

s.n6*/z/?J

3«/i^)S i/j/ 2̂ )

-W^) (^ftW) %\r\
l
tfo)

J

T^ikYH&h*^ 2 Si/iCfrz)
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chapter three assumes a limit to angles <8, t and oc. For the

purposes of this work the range of possible values for these

angles are confined as follows;

£: O (plus epsilon) radians - tt/4 radians

t: (plus epsilon) radians - tt/4 radians

a: (plus epsilon) radians - tt/2 radians

These limitations are reasonable for this particular

case and they enable a useful simplification. For small

angles the sine of that angle can be approximated as the

angle value itself (in radians). Table 13 verifies the

assumptions made here.

TABLE 13. SIMPLIFICATIONS

TT/8 s 5/2 at $> s maximum

w/8 = .3926991 radians

sin(w/8) = .326834

i

For this case the angle a is held constant. Using all

the above assumptions and approximations the Jacobians and

their determinants are greatly reduced in complexity.

Tables 14 and 15 summarizes the development of the

simplified Jacobian and determinant for the measurement

equation containing the variable X. This Jacobian is chosen

because it is the least complicated of the two.
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TABLE 14

SIMPLIFIED VERSION

Measurements

:

'V = arccot/ X-2RSS
j

S = sin (a/2)
LR$a ^ a = sin(a)

V = -aR/' XI - IX \

(x j - 4R35SX + 4R 2 $ J S y
/

Jacobian

:

X 2 - 4RSSX 4R 2 <6 2 S x ^-<

/o/ X 2 - 4R1SX 4R 2 £ 2 S

/
i

j
?v

= J/?/f = aR /2X$ QC-2R1S) * 1 <4R 2 S 2 S-X 2
>

|JX ~XT~- 4R1SX + 4R a $ 2 SV IT2"- 4R1SX + 4R 2 $ 2 S

J» - J^'i^ aR X(4R 2 $ 2 S-X 2
) +4RSX5 ( X-2R5)

4R5SX 4R 2 5 2 SL X 2 - 4R1SX + 4R 2 1 2 S
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TABLE 15

LINEAR DEPENDENCE

J} = JM J^ - J
12_

Ji( = a'R J <X$ - 5X)
X J - 4R5SX + 4R J $ J S

sine© X J - 4R35SX + 4R J $ J 5 = R a $ J a J 1 - f X - b J >

( RSa

This holds for ©very X and 36 where a = sin(a) and
b = 2S/a = tan(a/2)

.

j

J
j

= if X5 - 95X = X - 5
X $

In X + X, = In $ + 5 r In X = §§ - x = C

_X_ = e = constant X = C
{

5

3

Therefore IJI = if X and §5 are linearly dependent.
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The second method involves the use of computer

simulation. The determinant (with the variable X as before)

is calculated using no assumptions. The angles 1 and «r are

incremented in small steps from radians to tt/4 radians.

The angle a (that is actually constant) has been given five

different values for test purposes. The value of the

determinant approaches zero but never actually achieves

zero

.

Note from table 15 that,

jj| = _ a J RJ (XI - IX) (4.4)
X 2 - 4RSSX + 4R*$ i S

If XI = $X the determinant of the Jacobian is zero and

the system is not observable. From Table 15 it is apparent

that the system is not observable if X and 3> are linearly

dependent

.

The various calculations and computer simulations

indicate that the system initially developed in chapter

three (Table 5) is observable under general conditions.

According to the results of the computer simulation the

determinant never actually reached zero for the particular

test values (50 test values) chosen. However there are

certain conditions dependent upon the initial values 3> and

t
o

when the system is not observable. Equation 4.1 defines

these circumstances. Since the system is observable for

most cases it is possible to design an adaptive observer.

This is the goal of Chapter 5.
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V. OBSERVERS

At this point in the satellite tracking project it is

necessary to approach the state estimation problem. In

general, a process can be characterized by the state and

measurement equations;

X(t) = AX(t) (5.1)

Z(t) CX(t) (5.2)

where X(t) is an n-element column vector representing the

states, Z(t) is a q-element vector of measurements, A and C

are nxn and qxn matrices respectively. The order of n is

greater than or equal to the order of q. It is desired to

obtain knowledge of the states of X(t). However, it is Z(t)

that is measurable and therefore known. For this reason it

is necessary to estimate X(t). The device for estimating

the state X(t) is the observer.

A. LINEAR LUENBERGER OBSERVERS

A model of an open loop observer can be constructed as

follows;

Y(t) = AY(t) (5.3)

This model operates as does the process or plant. The

estimation error is

e(t) = Y(t) - X(t) (5.4)
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This is differentiated with respect to time(t).

e(t) = Y(t) - X<t)

= AY(t) - AX(t)

= Ae(t) (5.5)

Therefore,

e(t) = e^
r e<0) = 8(t)e(0) (5.6)

If the eigenvalues of A all have negative real parts

then e<t) approaches zero as t approaches infinity. The

error signal e(t) decays at a rate determined by the

location of the eigenvalues of A. The rate of response of

the process is also determined by the eigenvalues of A.

To make the decay rate independent of the dynamic

process, often a state model is 'driven' by an error signal.

In this case the observer is characterized by;

Y(t) = AY(t) G(2(T) - CY(t>) (5.7)

and the error equation is

e(t) = Y(t) - X(t)

The matrix G is an nxq gain matrix which can be selected

to determine the rate at which y(t) approaches X(t). The

observer equation can be written as;

Y = AY(t) G( (X(t> -CY(t) ) = AY<t) + GCe(t) (5.8)

The driving term is GCe<t) and its purpose is to drive

the estimate Y towards X. The error equation is

differentiated with respect to time.

e(t) = Y(t) - X(t)

e(t) = AY(t) +G(CX(t) - CX(t>> - AX(t)
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e(t) = (A-GC) (Y(t) -X(t)

)

(5.9)

e(t) = Fe(t) (5.10)

where F = A-GC

e(t) = e F_t e<0> (5.11)

As expected, the results depend on the initial

conditions. The gain matrix G must be chosen to place the

eigenvalues of F at suitable locations. In designing an

observer it is usual to place the eigenvalues of F where

desired and then determine G.

If the process has an input signal, u, then the

appropriate equations are;

X(t) = AX(t) + BU(t) (5.12)

Z(t) = CX(t)

The observer for this system is characterized by the

following equation.

Y(t) = AY(t) +BU(t) +G(Z(t) -CY(t)

)

(5.13)

The error response is the same as in the above and is

given by equation 5.11. A block diagram of the observer is

shown in Figure 5.1.

When designing a linear or non-linear observer it is

desirable that the observer error become small rapidly and

that the observer not be very responsive to noise. It is

very difficult to meet both these goals since they seem to

conflict. The observer must also be supplied with a set of

initial conditions.
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If some of the states of a given system can be measured

there is no reason to estimate them. An observer of reduced

dimension can be designed to estimate only those states that

cannot be directly measured. For example, if there are n

states in a system and q of them can be measured, the

observer only requires <n-q) states. Figure 5.2 illustrates

the reduced order observer.

B. NON-LINEAR OBSERVER

For the design of the non-linear observer the techniques

developed in CRef. 7] can be applied.

Declare two given n-dimensional vector valued functions

of time to be Y(t) and 8<t). Let these two functions be

related by HC8) as Y(t) = H(9). The vector H<8) is

considered known.

Assume that each ith row H<8) is dif ferentiable at least

once on all parameters 8. Therefore an nxn Jacobian matrix

is defined as

J(8) =J h(9) =fj;; (8 >| (5.14)

J 8 L
J

J

3L - (8) = J H; ( 8) (5.15)

Also;

Y ( t ) = H r < 8 ) JH(8 ) -S& = J < 8 ) 8 < t > (5.16)
J 8 J-2-
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Figure 5.1 Basic Observer

Figure 5.2 Reduced Order Observer
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Figure 5.3 is the general non-linear observer referred

to in CRef. 73. The transpose of the Jacobian is represented

(

and 9i (t) represents a solution of Y(t) = H<8) for any given

as J (8). A string of parallel integrators are denoted as

trajectory Y, (t) . In regards to this figure there exists a

positive scalar s and a time T>0 such that for time t>T

(II

8

S (t) - 8d (t)|j < s> if the following three conditions are

met

.

1. K is positive definite

2. The magnitude of the determinant of the Jacobian is
bounded both from above and away from zero from
below for the particular trajectory Yj <t)

.

3. The magnitude of Y^ (t) is bounded from above.

In addition, by increasing the minimum eigenvalue of K

the scalar s is made arbitrarily small.

An estimation error signal is defined as;

e<t) = 8 3 (t) - 9 d <t) (5.17)

Rearranging provides;

8 3 (t) = e(t) 8^(t)

Referring to Figure 5.3 the following relation is

stated;

8 S = -KJ r(8 s ) (H<8^) - H(8j)) (5.18)

For notational convenience the following is defined;

ZCe,8 d > = H(e+8j) - H(8 d ) = H(8.) - H(8^) (5.19)

In this case sigma (Z) does not refer to a summation.

It is simply a variable.
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Figure 5.3 Non-Linear Observer
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It follows from the above calculations that:

e = 93 " 9
i

= "KJ (85 ) Z(e,9
d

) - 9
d (5.20)

The time-varying Lyapunov functions of the error signal

are defined as:

V(e,t) = XZ' <e,e,i )Z(e,9^ ) (5.21)

Since the determinant of the Jacobian is bounded

Z(e,8
A

) = if e = then it follows that V(e,t) > if

e = 0. Further calculations are summarized in Table 16.

The minimum eigenvalue of J<e + 9\j)J (e+9^) is denoted by

/) i which is always greater than zero. The minimum/
i-

aeigenvalue of K is denoted by A ^ which is also greater than

zero so both eigenvalues are positive. It follows that;

(5.24)

(5.25)

V <_ -\ /) K ^S<e,8d >|| '-SjO'ce^ )Z(e,9 d )

Vd = j(9^ > ej

8 1 = J(9, ) Yj (5.26)

-i

Since Y and J(9 ) are both bounded J(9 d ) and 9j are

also bounded for all t > 0. Therefore H 9d ij <~ C. and

j|J(9
d )|| < C 2 .

v <-A*^||r<«,eA >||' - c
(
c^jz(e,9j))|

V < -<Mj.^' )Z(e,9j )|j -CC2 /
v~2XkHT")

2 +C
v
Cz/2/U/lt: (5.27)

C. DEVELOPMENT OF SATELLITE OBSERVER

For the design of the satellite observer (the system

initially presented in Table 5) the state 9 as described

above now represents both X and 5 as equation 5.28 shows:

9 = X, X

9J

(5.28)
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TABLE 16 LYAPUNOV FUNCTION OF THE ERROR SIGNAL

Vet) =

_T

J

jyfe.t) ie. JYU.t)
Jt )x

J s^, a
o e

T

r^.oj)

— <^H (fer^)

0£ S^<9j) = o fe^ja^ej)

T

^VY^t) _

Jt

-T-X- .„
J &)ZMjJ 4 = -^/j) J^ . -fld J ^jj27"de,<?j

V = "iTfe,^ T&i&)kJr
&T4)Z^flj)-Qjjfe,)Zfe,&)
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u =

Y = V
c.

r,

The results developed earlier in this chapter

(part B) are now applied to the particular problem of the

satellite tracker. The Jacobian of Table 7 is redefined in

equation 5.31.

It is intuitively obvious that;

Y = H(X,$,U> = H(9)

The further development of both HC8) and 9 is presented

in table 17. The information in Table 17 leads to the

design of an observer for the satellite. This design is

depicted in Figure 5.3. Figure 5.4 shows the model used to

check observer results. Both the observer and model are

simulated using the FORTRAN programming language. The

results are discussed in the next chapter.
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TABLE 17 CALCULATIONS FOR OBSERVER DESIGN

U(e) -

arc cot U m6A ) sin^/2)

-/ i^iMl^^iMi^
SinG*)5ih

z/<f7>0

hUe) -I - % the Calcukhed values

°}i ^~iz

J tes )

-'

J*, J

r

: k =

2-2

L J

K,

O K, ; v i

K.K* >0

4= KTVejl^'-^D

4jtt)= . I ) tlbi »T\eas,aff<J Values

/ I The errer

L«T ^jLt}- VsLtJ ~i(e ;
Signal

a. 4-ma( rcsu.lt i^r QDSefl/er
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Figure 5.4 Satellite Observer
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VI. SIMULATION RESULTS

The basic observer designed in Chapter 5 is simulated to

prove authenticity. Recall that the original state and

measurement equations were developed in Chapter 3. Due to

the satellite's limited GSW, several parameters (including

angles $ and t> are confined in their maximum attainable

values. Therefore, these parameters were kept within

specific ranges. The angle alpha (a) is taken to be a

constant 30". This value is selected for convenience.

The angular velocity of the target (u-v> is chosen to be

0.0005 rad/sec. This sets the target speed at about

2 mi/sec. The angular velocity (c^> of the satellite is

chosen to be 0.00045 rad.sec which yields a speed of about

1.8 mi/sec. These are arbitrary but not unrealistic values.

A. THE BASIC CONTINUOUS OBSERVER

Figure 6.1 depicts the basic simulation block diagram.

The initial conditions S and X are 0.2 radians and 1000km

(621.5 mi) respectively. These values are arbitrary but

within the acceptable range. Recall that X = R(S--r).

Figure 6.2 is a block diagram depicting the basic

observer design that is simulated. Note that Figure 6.2 is

virtually identical to Figure 5.5.
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Figure 6.1 Basic Simulation Block Diagram

_-/

Figure 6. £ Observer Block Diagram
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The equations representing the various elements in

Figure 6.2 were initially developed in Chapters 3,4 and 5.

Table 18 summarizes these equations.

The gain matrix (as developed in Table 17) is chosen to

be a diagonal matrix of the form:

K =
f
k,

I
kz

The elements k and k both must be greater than zero.

A diagonal matrix was chosen because it is fairly easy to

work with and it allows the error changes to be monitored.

There are two ways to describe the observer to be

simulated. It can be described in the continuous domain or

in the discrete domain.

The observer was initially represented as a continuous

model. A forth-order Runge-Kutta method is used for

integration. The continuous model was used in order to

eliminate any possible errors that could be introduced as a

result of discretization. However, simulations for both

versions produce no real differences.

B. THE DISCRETE OBSERVER

With the advent of micro-computers a discrete observer

acting as a one-step predictor is a more realistic choice.

In this model the foreward difference approximation is

employed

.

The basic definition is;

XCt ) = X(t K ) * At X<t,- )
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TABLE 18 OBSERVER EQUATIONS

OBSERVER !

e, ~- -p -A, e* = ?-4
x ^Jxdt-ji^ij^e^^e^it ; fcjfou (KJj3^Jl2e,])Jt

•79 - -/

+- -Tank</z)

A
hi =arcGot/Sm OV?* ,« _ £au (U^

n 6*0 SiO^/zJ

h -i fej^iWfl4s#o|
-

S^^ .-tanrf T ^ ink) S*^M
^Si'oWsin^/a)

J;

T ^ 07?
y

Y -y /

[-) S D E V £ L - P tf b

j |\i C U fi PT t R M

J,
u

<iai
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1 . Full Non-Linear Observer

First the original, highly non-linear observer

(figure 5.5) was simulated using a FORTRAN program on the

IBM 370 system. All attempts to find values of gains and

integration step for which observed states converge were

unsuccessful. Typically the observer enters steady state

with very small errors e, and e^; however, the estimated

states were far from actual values. It is possible that

this behavior is the consequence of the sinusoidal periodic

functions (sin(x/2R) and sin($/2)) in W and ;7 . Recall from
L C

Chapter 4 that this observer is not shown to be observable

in the strict sense. Univalence may not exist due to the

reiterative nature of the sine function. In order to avoid

periodicity an approximation of a non-linear observer is

considered

.

The simplified observer has the same form as the

full observer (see Table 18) , but the measurement equations

and the corresponding Jacobian are approximated as developed

in Chapter 4 (and repeated in Table 19)

.

The simplified observer simulated was being very

insensitive to changes in X and $. The observer stabilized

with a small error (e , and e 2) while X and $ remained

significantly different from X and $ respectively. The

exact reason for this behavior is unknown. However it is

theorized that the relative smoothness of the arccotangent

curve (arccot^) is responsible for this behavior.
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TABLE 19 SIMPLIFIED OBSERVER

1

Measurement equat ions:

set s = sin J (a/2) and a = sin(a)

h (X , $) = arccot (x - 2R5S
)

I R$a J

/

h : (X ,$) = -aR L. X5 - IX k

[ X' - 4R1SX + 4R J $'Sy

Jacobian

J,* = ^7/Jx -aR 3
X 2 - 4R1SX * 4R 2 $ 2 S

J. 2
= J V /J 1 aR X

X 2 - 4RSSX + 4R 2 $ 2 S

J i( = J^/J x = aR »

X 2 - 4RSSX 4R 2 $ 2 S

2XKX-2R5S) $<4R 2 $ 2 S-X 2
>

X 2 - 4RSSX + 4R 2
S5

2 S

<U* = J7/ji = aR *

X 2 - 4R5SX + 4R 2 $ 2 S

X(4R 2 $ 2 S-X 2
> + 4ESXS(X-2R$)

X 2 - 4R5SX + 4R 2 $ 2 S
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In order to circumvent this problem the measurement

signal is redefined.

2 . Redefined Non-Linear Model

A new measurement variable is defined as:

/-^<t> = x(t)/5(t) = RsinCcc) (cotC^Ct) ) tan(a/2>)

If the value of a is known and ?7(t) ± s measured;

then u<t) can be calculated. Taking into account the

assumed range for $(t> and X(t) and the values for

parameters R and a, the expression X/(R5sin(a))-tan(a/2)

never achieves a very large value. Therefore'1

/ (t) is

bounded away from zero. This implies that cotan (' ; <t) ) has a

bounded value.

The derivative o£/^-<t) is:

yU- <t) = Rsin(a) (- 7<t)/sin J <?(t) )

)

where ??<t> and -*7(t) are measured values and yc>.(t) is

evaluated.

The redefined non-linear model and observer are

presented in Figure 6.3. It is noted that this observer has

the same form as the observer given on the block diagram in

Figure 6.2. Observer equations are shown in Table 20.

All attempts to find the power K, , K ., and At (the

time increment) that would force the states to converge

failed. A satisfactory theoretical explanation for this

behavior was not established. However, one possible

explanation is that e and e are extremely sensitive to
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TABLE 20

MEASUREMENT EQUATIONS - REDEFINED NON-LINEAR MODEL

Measurement equations:

h, <X,$> = /^<X,5> = _X_
2

h 2 (X,$> = M<x,$> = X3 - $X = .1 JX - 5Xj

Jacobian

:

J.i = - h . = _ 1 ; J l2 = J h, = -X_. = -IX.
^ X $ ^$ $ J $ 5

JX § J

J i2 .
= <J h.. = _X(g) J - 2g(X$-$X) = ^l_(x$ + 2$x)

-3 5 $ H S 3

Observability;

= 1 /2jX - X
I 1 5

/

Jl a Ji, Jix " Ji*. J*i = 1 / 2SX - X - 1_ 5X = A_/5X_ - X

JJj = if 1X_ - X = O X = £/
$ X /$

Note that these conditions were defined previously.
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change in states which results in an extremely slow

convergence with a highly oscillatory transient response.

3. Redefinition of State Variables

Analysis of the model with redefined measurements

reveals that the form of the equations allow redefinition of

state variables. This may reduce the sensitivity of the

model

.

A new state vector CU,V3 is defined as:

U = X/5 and V = 1/3

Table 21 illustrates further development.

The block diagram in figure 6.4 shows the discrete

observer. A simulation of the discrete observer was run

with ^4: = 0.0005 and **i =0 . 00045 . Several different gains

were used to test convergence. Convergence is obtained for

the following ranges:

< K, At < 2 and < K ?_At/ \J^z
\

< 2

Arbitrary initial values for U and V were employed.

It seemed natural to assume Uo = 0, X =0 and V = 1 (1 =1

is within the allowable value for $)

.

To examine the observer's ability to track varying

•angular speeds it is assumed that LuL and ^i are sine waves.

<^r = A sin(Dt)

<^/s = B sin(Dt)

Different amplitudes and periods are tested and

successful tracking is achieved. Appendix C contains the

resulting computer graphs.
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Figure 6. 4 Discrete Observer
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TABLE 21

OBSERVABILITY CONDITIONS AND DISCRETIZED OBSERVER

Measurement equations:

/KU,V) = h
,

< U , V > = U

/U(U,V) = hz <U,V> = V(X - $U> «

Jacobian:

=

Jz. = ih t = -5V ; Ji2 = dh^ =

J>U -3V

X - $u

Observability conditions are the same:

IJj = X -5U * X - IX /* >

Continuous observer:

U = K, J„ e, * K,J2 ,
e,

V = K*J U e, * K 2 J IZ e z

The discretized observer becomes;

e IK = yU<U< ,V K > - h, <U K ,V„> =/-<~ U
«r

•^A<UK' VK ) " h ^^' VV "A"'* <x - $ U<>

U^,, = U\ + K, 4te, fe
+ K (

«t - J^.CU K ,v <> e^ k

Vkh = V K KutJiiCU^V^) e* <.
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As expected the amplitude of the sine wave

representing state <A/D;B/D) which can be tracked is

inversely related to the period of oscillation.

4

.

Model Decoupling

Analysis of the error equations provide;

9, = /><U,V> - h,<U,V) = U-U

e 2.= /
^(U,V) - hi(U,V) = V(X-$U)-V(X-$U>

= X<V-V)-$(UV-UV)

The block diagram in Figure 6.4 indicates the

possibility of decoupling the observer into two first order

models by letting J-i equal zero <J^ is already zero)

.

Figure 6.5 shows a block diagram of the discrete

subsystem. The discrete system of Figure 6.6 is certainly

stable if it's eigenvalue lies within the unit circle.

|l-a| < 1 ^> < a < 2^>0 < K, At < 2

Under this condition the system has a steady-state

error of zero for a constant input u.

Hence the system acts as positioning servo-mechanism

and is capable of tracking the relatively slow varying

inputs with very small errors.

5. Subsystem Two

Assuming that subsystem 1 is tracking u ( u(t) =

u(t)> the error e t can be approximated as:

e^ (X - 1U) <V - V)

The observer is reduced to the gradient algorithm

where the gradient is:
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SuB^yJTbMi i = K, e, = K
v
u-K,au- -r^,

^ = -U,

vs
^

CORRcSPCMDi/VG DlSCRETD WDtL

C.OL = K, At)

Figure 6.5 Subsystem 1

Figure 6.6 Discretized Block Diagram
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J(ez

)

= X - SU = J

Figure 6.7 illustrates the observer. This result is

also in accordance with the method proposed in CRef . 6]

.

Defining ^= (X-5U)V as a new measurement the

corresponding function h is h=(X-$U)V. The Jacobian is

j = Jiyji/s x-iu.

In order to simplify the stability analysis the

Jacobian, J, is replaced with the signum function,

signum(J). This is sufficient to guarantee the negative

feedback of subsystem 2. Subsystem 2 is analogous to

subsystem 1 and will be stable if < K,. At < 2.

Consequently this system also performs as positioning servo-

mechanism and will track relatively slow varying inputs V(t)

with very small error.

The presented analysis leads to a definition of the

decoupled observer. This observer is depicted in Table 22.

Appendix D contains the computer simulation results.

Figure 6.8 is essentially the same as Figure 6.4

with J^< = and Jx^ = signum(J 2 <i >• Therefore it is

possible to consider this algorithm a simplification of the

algorithm developed in CRef. 7] . However, it should be

pointed out that the decoupled observer can be derived

directly through analysis of the two linear subsystems

presented above

.
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TABLE 22

DISCRETIZATION

. A A- A.

a,
= JJ. - u = - h

,
( U , V

)

e = - V(X - $U> *M - h z (U,V>
2. '

U = K
(

e,

V = K ,5ygn(J z2 >e c

After discretization this becomes

«k, = «* - K^te,,.
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In the decoupled model it is easier to control gains

since the J^^ element does not affect stability. It is

noted that slightly more oscillatory behavior is present

at the beginning of the simulation. This is not unusual for

gradient type algorithms.

Satisfactory results for the product K&t = 0.1 are

expected if the observer is analyzed from the sampling

theorem point of view. This presupposes that both

continuous subsystems posses only one time constant ^= 1/K.

The sampling theorem requires that t < <TV2 and 4tK < 0.5.

Experience has shown that the best results for the

one-step integration are obtained if the integration step

(sampling time) is ten times less that the smaller time

constant in the system. This means 4t * 0.1 (1/K) and

*tK * 0.1.

The sampling theorem is violated if AtX=l. As a

consequence the observer requires much more time to extract

sufficient information from the measurement and to start

state tracking. The simulation results demonstrate that

when the product dtK equals unity convergence starts after

fifty seconds. This is approximately ten times slower from

previous experiments where the sampling theorem is

satisfied

.

In the case of 4tK = 0.01 the system pole is very

close to the unit circle. Therefore, convergence is

relatively slow.
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As demonstrated by the various computer generated

graphs, the simulation results for this system are

satisfactory. Therefore the selected coordinate system is

proven acceptable.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The objective of this thesis is twofold. The first part

of the thesis involves finding a suitable coordinate system

in which to establish a satellite tracking model. The

second part of the thesis uses this coordinate system to

obtain an observability analysis and design an observer.

This latter portion is the main thrust of the thesis.

The satellite model is based on the coordinate system

developed in chapter three. The model is simplified yet not

unrealistic. The main limiting assumption confines both the

satellite and target to a constant speed and heading. An

unchanging direction is important due to the desire to

maintain a constant angle a. These restrictions imposed

on the satellite are explained in detail in chapter three.

Satellites and targets (aircraft) would normally travel a

great circle path which requires a constant bearing.

Therefore, the assumption is valid. This basic premise

resulted in the spherical triangle that forms the basis of

the system presented in Table 5. Once the basic model

became established an observability analysis was

accomplished in chapter four. The basic observability

theories developed in CRef . 6] (for mechanical springs) has

been successfully applied to satellite observability. The

system proved to be observable in the wide sense.
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Further studies in the area of satellite tracking and

observability are highly recommended. A more realistic

satellite model could be devised in these studies. To

improve the accuracy of the satellite motion equations the

earth must no longer be assumed spherical and the

satellite's orbit must no longer be confined to simple

circular orbit. This leads to a different coordinate system

by necessity. Relative coordinate systems should be

explored in more detail. Appendix B discusses this briefly.

A possible approach involves using the Euier equations o£

motion. A target position with respect to a satellite prime

axis -could be transformed via pitch, yaw and roll to a

satellite normal axis. Enhanced satellite tracking studies

should include a target that is not confined to a constant

heading. The target should be allowed to alter course to

further complicate the coordinate system and observer model.

Both the satellite and target should be subject to random

disturbances. This leads to the development of stochastic

models. References 6 through 8 are highly recommended to

anyone pursuing this course of research.

This thesis has successfully developed a model for

satellite tracking. The system has been determined to be

observable and an observer has been designed. The observer

model has been successfully simulated.
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APPENDIX A

ELEMENTS OF ORBIT

Satellites travel in elliptical orbits. Figure A.l

depicts a basic ellipse. The distances a,b and c are

related by equation A.l.

c 2 = a J - b J (A.l)

In this equation: a = semi-ma.]or axis

b = semi-minor axis

c = distance between foci

Eccentricity is also a parameter often used in

connection with elliptical orbits. Eccentricity, e, is a

meassure of the elongation of the ellipse. Equations A.

2

and A. 3 relate eccentricity to previously defined

parameters

.

e' = 1 - (b/a) (A. 2)

c = ae ( A . 3)

Other elements include apogee and perogee. Apogee is

that point on the orbital ellipse where the satellite is

furthest from the earth (focal point). The perigee is that

point where the satellite passes closest to the earth.

These new parameters are related to a and e by equations A.

4

and A . 5

.

apogee distance = d * = a(l + e) (A. 4)

perogee distance = d^ = a(l-e) (A. 5)
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Any two of the above six parameters can define an

ellipse. For the special case of a circle; e = 0, d = d

c = and a = b

.

To describe satellite motion more information is needed.

The inclination angle, i°, is the angle of intersection

between the orbital plane and the earth's equatorial plane.

Figure A. 2 illustrates. Information on the period of

revolution of the satellite is needed as well as knowledge

of the precise time that the satellite passes it's apogee or

perogee

.

Some references use information on the ascending node to

determine satellite paths and positions. Figures A. 3 and

A. 4 illustrate the relationships. CRef. 5J uses the

parameters in table A.l as the necessary elements of orbit.

TABLE A.l

T - period (in minutes) w - argument of perogee

i - angle of inclination e - eccentricity

.,]
r

- SSP longitude at perogee t - time at perogee

The elements listed in table A.l completely describe the

theory of satellite motion. Perturbations are ignored. In

practice the motion of a satellite is very nearly described

by these elements of orbit.
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APPENDIX B

RELATIVE MOTION

The general theory of relative motion is developed using

simple frames of reference. An object in frame A moves with

respect to that frame. Frame A moves with respect to the

fixed frame B. These frames are considered to be coordinate

systems or sets of reference axes. Figure B.l depicts an

object in the prime system. The X-Y axes represent the

fixed system. In figure B.2 the prime system moves with

respect to the fixed system a distance d. The object in the

prime system moves a distance d' within its system.

Therefore the object moves a distance d-rcT .4i_ = d d' with a

velocity V rcTaL = V + V .

Further studies concerned with satellite tracking should

involve relative motion. The fixed coordinate sytem is a

three dimensional system with its origin at the center of

the earth. The center of mass of the satellite is the

origin for the relative or prime coordinate system. The

prime system orbits the fixed system.

The target is detected by the satellite and its motion

is therefore meassured with respect to the satellite's prime

coordinate system. These relative coordinates can be
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related to the fixed coordinate system by a suitable matri

transformation

.
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Figure B. 2 Relative Motion
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APPENDIX C

ORIGINAL MODEL SIMULATION RESULTS

This appendix contains the simulation for the original

model. These graphs depict the states X and 1. Figure 6.4

presents the block diagram of the model simulated. The

simulations are run for 10 seconds and 500 seconds. This

insures that a variety of suitable graphs are available for

analysis. In order to accompany test observer behavior

several different gains and time increments are used in the

simulations. Specific combinations of gain and time

increment produce excellent results (as explained in

chapter 6)

.

The observer model's ability to track a constant is

recorded on eight graphs. The first two graphs (pages 112-

113) depict state X for constant angular velocities and

different gain values. The next two graphs (pages 114-115)

depict state 5 for the same gains mentioned above. A gain

(k) of ten is clearly beneficial for both X and $, since

then /jtk = 0.1.

The following two graphs (pages 116-117) show two

different time increments for state X, constant gain and

constant angular velocities. The graphs on pages 118 and

119 display the same two time increments for state <£. As
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expected the smaller of the two time increments (0.01

seconds) gives a slightly better performance.

The last six graphs exhibit the model's time response to

sinusoidal angular velocities. These are the results of the

test used to determine the model's ability to track time

varying functions. The first three of these graphs (pages

120-122) illustrate a target angular velocity of

•OOl'Cos(Dt) and a satellite angular velocity of

.0009 cos (Dt) . The variable D is varied in order to test

observer response to different rates of change in angular

velocities. The final graphs (pages 123-125) depict X and 5

with "a target angular velocity of .005*cos(Dt) and a

satellite angular velocity of . 00045 cos ( Dt) . The variable

D is 0.01 in this simulation. This results in sinusoids of

smaller amplitudes and longer periods. The results of

tracking the sine wave are very satisfactory. It is noted

that the relative error for both states is very small.
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APPENDIX D

DECOUPLED MODEL SIMULATION RESULTS

These twenty graphs resulted from the decoupled model

simulations (as described in chapter 6). Figure 6.3

presents a block diagram of the decoupled model. The first

five graphs (pages 128-132) illustrate the time response for

state X. The time increment , ,t , is held constant at 0.01

seconds. Several different gains were used on each graph.

The state X was followed closely by X. Different scales and

simulation times are plotted to produce a variety of

suitable graphs. A gain of ten consistently produces very

good results in all five graphs.

The next group of five computer graphs (pages 133-137)

exhibit state 5. As above, the time increment,
:
t , is kept

at 0.01 while the gain (k) is varied. The time response for

the lower gains in particular are very satisfactory. The

state $ is closely approximated by <E.

The third set of five graphs (pages 138-142) represent

state X. This group of computer graphs holds the gain

constant at one and allows the time increment to vary. As

expected, smaller time increments (0.1 and 0.01) result in

superior tracking capabilities.

The last set of five graphs (pages 143-147) show 1 and

$. The gain is kept at a constant value equal to one and
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the time increment is varied. As before, the smaller time

increments produce the best results.

In all of the above examples, the approximated state (X

or $> closely tracks the actual state (X or 1) . These

simulation results are quite satisfactory.
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